Alcanzar el espacio con un avión. Es el sueño de cualquier ingeniero aeroespacial, un sueño tan difícil de hacer realidad que muchos lo tachan de simple fantasía. Y eso que la idea es, en teoría, sorprendentemente sencilla. ¿Por qué no usar el oxígeno del aire y la fuerza de sustentación de las alas para alcanzar el espacio, adelgazando así la tremenda masa de los cohetes? De este modo tendríamos a nuestra disposición un sistema barato y reutilizable para alcanzar el espacio.
Obviamente, en el vacío no hay aire, así que para el último empujón hasta la órbita se debería usar un motor cohete convencional. El problema consiste en alcanzar la velocidad mágica de Mach 25 (29000 km/h), la ansiada velocidad orbital.
Construir un sistema de propulsión atmosférico capaz de alcanzar estas velocidades es algo así como el Santo Grial de los constructores de motores. Pero hasta la fecha nadie ha logrado construir un motor capaz de viajar a dicha velocidad.
Ahora debemos añadir otra dificultad que resulta tanto o más importante: el calor. A las altísimas velocidades de un avión espacial, la fricción con el aire y las ondas de choque ocasionan que la temperatura del fuselaje se dispare. A pesar de que un avión espacial sólo pasará unos minutos en la atmósfera, es más que suficiente para requerir el uso de un pesado y complejo escudo térmico, escudo que deberá usar también durante la reentrada.
La capacidad de aguantar altas temperaturas está ligada a la velocidad máxima del avión. De nada sirve tener un motor capaz de alcanzar Mach 25 si la nave se nos derrite por el camino. Tanto EE UU como la URSS han estudiado este concepto pero está claro que el desafío ha resultado ser mucho más complicado de lo que esperábamos. ¿Veremos en este siglo el primer avión espacial de la historia o se trata en realidad de un concepto totalmente inviable?